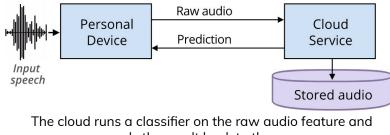
Are disentangled representations all you need to build speaker anonymization systems?

Pierre Champion^{1,2}, Denis Jouvet¹, Anthony Larcher²

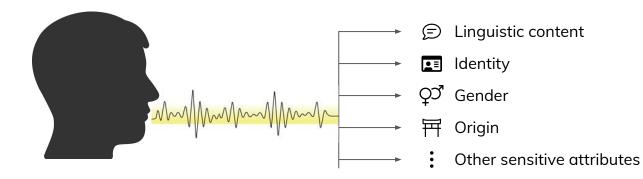
¹Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France ²Le Mans Université, LIUM, France

Context: Speech recognition in the cloud



sends the result back to the user

Issue: Privacy



Two general solution:

anonymization

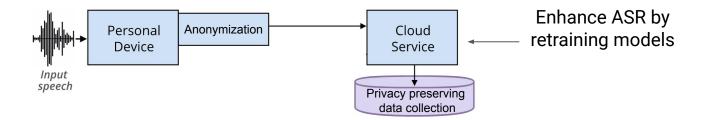
Voice Privacy Challenge: Promote research in privacy related to speech

https://www.voiceprivacychallenge.org/

Outline:

- Introduction
 - $\circ \quad \text{Application case} \\$
 - Threat model
- Anonymization pipeline
 - Speaker representation
 - \circ Content representation
 - Prosodic representation
- Results
- Conclusions

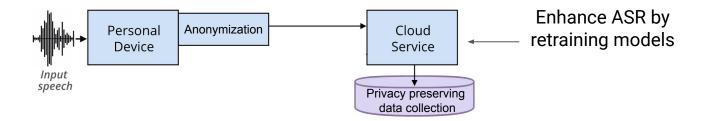
Application context: Share speech data for training new ASR models



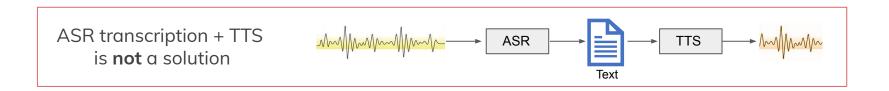
Collecting large speech dataset representative of **real users and various usage conditions** is important to improve ASR systems Must be done while preserving user's privacy => keep the speaker's identity private

1. OSIA, Seyed Ali et al., « A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics », in : *IEEE Internet of Things Journal* (2020).

Application context: Share speech data for training new ASR models



Collecting large speech dataset representative of **real users and various usage conditions** is important to improve ASR systems



1. OSIA, Seyed Ali et al., « A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics », in : *IEEE Internet of Things Journal* (2020).

Threat model: Linkability of the speaker's speech **ISO/IEC** international Standard 24745 on biometric data protection

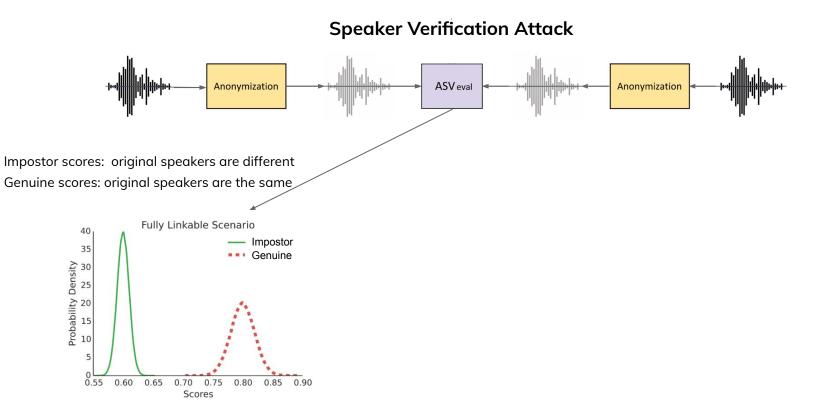


Image from: General Framework to Evaluate Unlinkability in Biometric Template Protection Systems, Gomez-Barrero et al

Threat model: Linkability of the speaker's speech **ISO/IEC** international Standard 24745 on biometric data protection

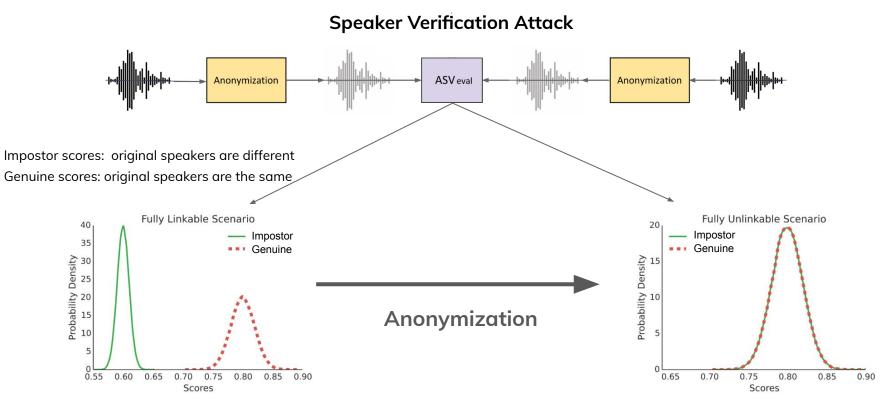


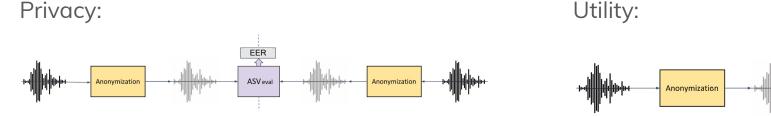
Image from: General Framework to Evaluate Unlinkability in Biometric Template Protection Systems, Gomez-Barrero et al

Voice Privacy: Evaluation protocol

Voice privacy challenge 2022 informed attacker evaluation

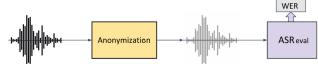
Goal:

- Privacy: reduce speaker linkability
- Utility: allows the speech to be used for downstream task such as speech recognition



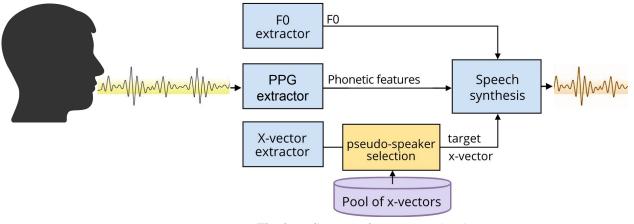
Privacy evaluation using Automatic Speaker Verification Metric: EER (maximize)

Utility:



Utility evaluation using Automatic Speech Recognition Metric: WER (minimize)

Voice Privacy: Speaker anonymization framework

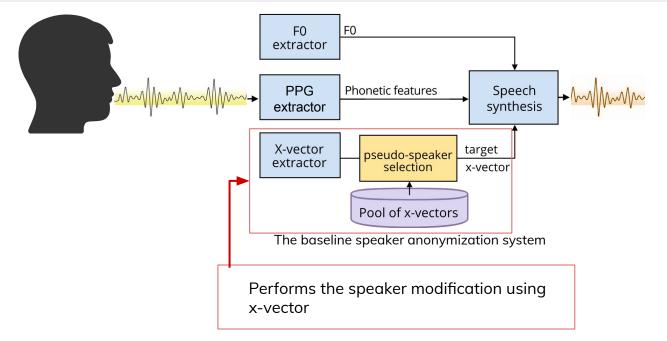


The baseline speaker anonymization system

Speaker representation and modification

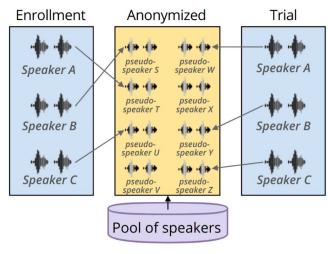
Speaker representation and modification

Baseline voice privacy



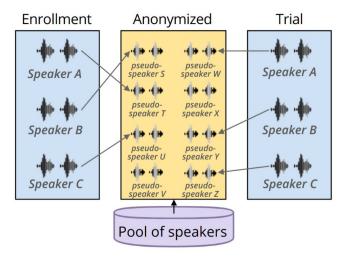
- 1. FANG, Fuming et al., « Speaker Anonymization Using X-vector and Neural Waveform Models », in : 10th ISCA Speech Synthesis Workshop, 2019.
- 2. SRIVASTAVA, Brij Mohan Lal et al., « Design Choices for X-vector Based Speaker Anonymization », in : Interspeech (2020).

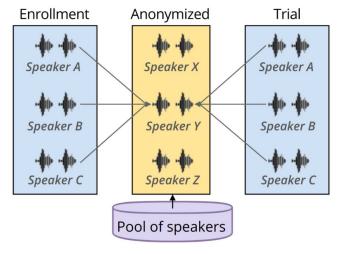
Baseline Voice Privacy: Speaker modification



- [1,2] Pseudo random target speaker selectionAny to Any voice conversion
 - 1. FANG, Fuming et al., « Speaker Anonymization Using X-vector and Neural Waveform Models », in : 10th ISCA Speech Synthesis Workshop, 2019.
 - 2. SRIVASTAVA, Brij Mohan Lal et al., « Design Choices for X-vector Based Speaker Anonymization », in : Interspeech (2020).

Voice Privacy: Speaker modification



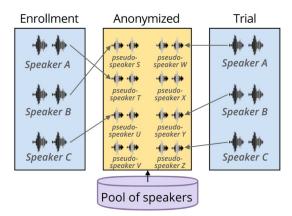


[1,2] Pseudo random target speaker selectionAny to Any voice conversion

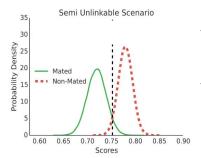
[3] Unique speaker target selection **Any to One** voice conversion

- FANG, Fuming et al., « Speaker Anonymization Using X-vector and Neural Waveform Models », in : 10th ISCA Speech Synthesis Workshop, 2019.
- 2. SRIVASTAVA, Brij Mohan Lal et al., « Design Choices for X-vector Based Speaker Anonymization », in : Interspeech (2020).
- 3. CHAMPION, Pierre, Denis JOUVET et Anthony LARCHER, « Evaluating X-vector-based Speaker Anonymization under White-box Assessment », in : SPECOM, 2021.

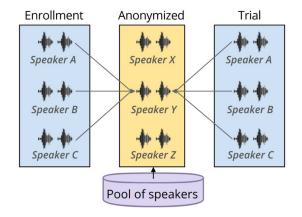
Voice Privacy: Speaker modification



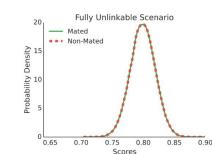
Pseudo random target speaker selection Any to Any voice conversion



- Not all target selection algorithm fulfill unlinkability
- Overestimation of privacy protection are more susceptible due to weak attacker



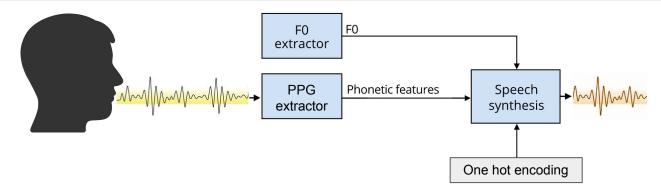
Unique speaker target selection **Any to One** voice conversion



- Fulfill unlinkability
- Symplicity
- Better guarantee to train a powerful attacker

Speaker representation and modification

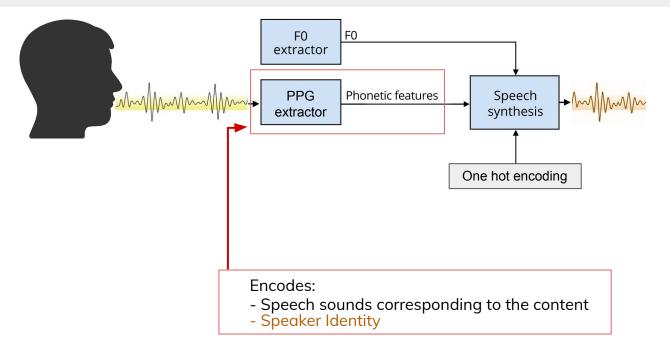
Proposed



array([0, 1, 0, 0])

Phonetic PosteriorGrams

Phonetic PosteriorGrams representation

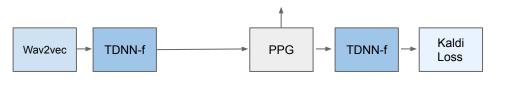


- 1. ADI, Y. et al., « To Reverse the Gradient or Not : an Empirical Comparison of Adversarial and Multi-task Learning in Speech Recognition », in : *IEEE ICASSP*, 2019.
- 2. CHAMPION, Pierre, Denis JOUVET et Anthony LARCHER, « Privacy-Preserving Speech Representation Learning using Vector Quantization », in : Journées d'Études sur la Parole (JEP, 34e édition), 2022.
- 3. SHAMSABADI, Ali Shahin et al., « Differentially Private Speaker Anonymization », in : arXiv (2022).

PPG extractor: acoustic model

Explored with multiple acoustic model:

• Wav2vec 2.0 pre-trained with VoxPopuli Wav2vec 2.0-TDNN-f trained with librispeech train-100

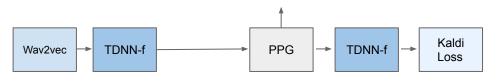


PPG extractor: acoustic model

Explored with multiple acoustic model:

• Wav2vec 2.0 pre-trained with VoxPopuli Wav2vec 2.0-TDNN-f trained with librispeech train-100

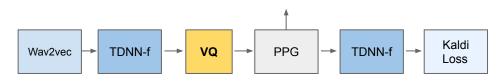
=> extract **continuous** PPG



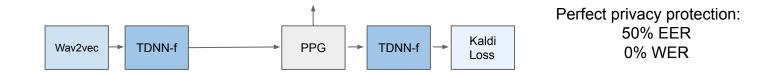
• Wav2vec 2.0-TDNN-f trained with librispeech train-100

+ vector quantization layer

=> extract **discrete** PPG



Dataset	LibriSpeech test-clean	VCTK test
Method	$\begin{array}{lll} Privacy & Utility \\ EER\% \uparrow & WER\% \downarrow \end{array}$	PrivacyUtility $EER\% \uparrow$ $WER\% \downarrow$
Clean speech	4.1 4.1	2.7 12.8
Anonymized (Wav2Vec 2.0 - No VQ)	\uparrow 7.7 $3.8\downarrow$	↑ 12.1 7.8 ↓

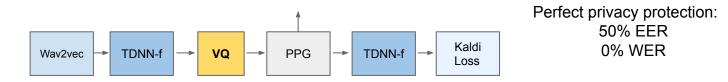


Wav2vec 2.0-TDNN-f

Small privacy improvement for both datasets Utility improvement for both datasets

Speaker leakage occurs in the pipeline as the EER are still very low

Dataset	LibriSpeech test-clean	VCTK test
Method	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{lll} \text{Privacy} & \text{Utility} \\ \text{EER}\% \uparrow & \text{WER}\% \downarrow \end{array}$
Clean speech	4.1 4.1	2.7 12.8
Anonymized (Wav2Vec 2.0 - No VQ) Anonymized (Wav2Vec 2.0 - VQ 48)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\uparrow 12.1 \qquad 7.8 \downarrow \\ \uparrow 28.0 \qquad 10.0 \downarrow$



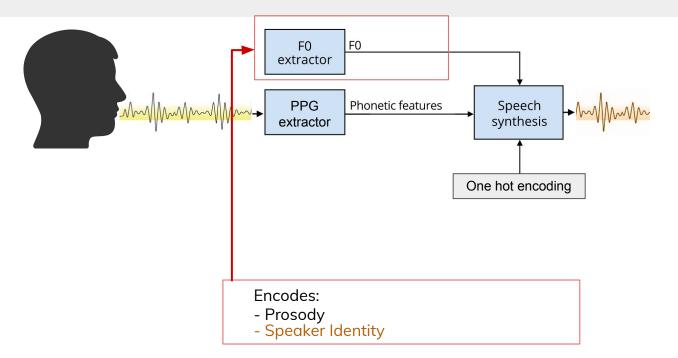
Wav2vec 2.0-TDNN-f VQ

Higher privacy improvement for both datasets Same utility improvement for both datasets

Vector quantization applies a constraint on the PPG representation space, making them more private without losing too much utility

Fundamental frequency

Fundamental frequency modification



- 1. CHAMPION, Pierre, Denis JOUVET et Anthony LARCHER, « A Study of F0 Modification for X-Vector Based Speech Pseudonymization Across Gender », in : The Second AAAI Workshop on Privacy-Preserving Artificial Intelligence, 2021.
- 2. GAZNEPOGLU, Ünal Ege et Nils PETERS, « Exploring the Importance of F0 Trajectories for Speaker Anonymization using X-vectors and Neural Waveform Models », in : Workshop on Machine Learning in Speech and Language Processing, 2021.
- 3. SHAMSABADI, Ali Shahin et al., « Differentially Private Speaker Anonymization », in : arXiv (2022).

Dataset	LibriSpeech test-clean		VCTK test	
Method		Jtility ER%↓	Privacy EER% ↑	Utility WER%↓
Clean speech	4.1	4.1	2.7	12.8
Anonymized Anonymized VQ 48 Anonymized VQ 48 + F ₀ NOISE	$\uparrow 7.7 \\ \uparrow 17.5 \\ \uparrow 23.4$	$3.8 \downarrow 4.5 \downarrow 4.6$	↑ 12.1 ↑ 28.0 ↑ 40.8	$7.8 \downarrow \\ 10.0 \downarrow \\ 10.3 \downarrow$

F0 modified + Vector quantized PPG performance

Perfect privacy protection: 50% EER 0% WER

F0 noise + Wav2vec 2.0-TDNN-f VQ

Highest privacy improvement for both datasets Same utility improvement for both datasets

Adding White Gaussian noise to the F0 trajectory allows to hide the speaker information that it contained

Dataset	LibriSpeech test-clean		VCTK test	
Method		lity R%↓	Privacy EER% ↑	Utility WER%↓
Clean speech	4.1	4.1	2.7	12.8
Anonymized Anonymized VQ 48 Anonymized VQ 48 + F ₀ NOISE	17.5	3.8↓ 4.5 4.6		$7.8 \downarrow \\ 10.0 \downarrow \\ 10.3 \downarrow$
Anonymized VPC 2022 baseline	13.5	5.1	20.6	13.0

F0 modified + Vector quantized PPG performance

Perfect privacy protection: 50% EER 0% WER

Significantly better than the VPC 2022 baseline

Conclusion

Q: Are disentangled representations all you need to build speaker anonymization systems? A: Yes, but how?

- One hot encoding is all we need, targeting a single identity => simplifying the pipeline with guarantee
- Vector quantized PPG has some limitation => Can we annotate the anonymized speech to retrain ASR system?
- F0 modification with noise has intelligibility limitation

Thank for your attention Email: pierre.champion@inria.fr

Live Demo / Shared Models / Code Source at:

https://colab.research.google.com/github/deep-privacy/SA-toolkit/blob/master/SA-colab.ipynb

Wav2vec 2.0 Vector quantized PPG performance

Dataset LibriSpeech te		h test-clean	VCTK test		
Method		Privacy EER% ↑	Utility WER%↓	Privacy EER% ↑	Utility WER%↓
Clean speech		4.1	4.1	2.7	12.8
Ours TDNNF NO VQ Ours TDNNF VQ 256 Ours TDNNF VQ 128 Ours TDNNF VQ 64		$\ \ \ \ \ \ \ \ \ \ \ \ \ $	$6.9 \uparrow \\ 9.9 \uparrow \\ 10.4 \uparrow \\ 12.4 \uparrow$	$\begin{array}{c c} 10.8 \\ 22.9 \\ 24.0 \\ 30.0 \end{array}$	$ \begin{array}{c} 19.1 \\ 24.1 \\ 26.3 \\ 29.1 \\ \end{array} $
Ours WAV2VEC2 TDNN Ours WAV2VEC2 TDNN	-	$\begin{array}{c} \downarrow & 7.7 \\ \downarrow & 17.5 \end{array}$	$\begin{array}{c} 3.8 \downarrow \\ 4.5 \end{array}$	$\downarrow \begin{array}{c} 12.1 \\ \downarrow \begin{array}{c} 28.0 \end{array}$	$7.8\downarrow$ $10.0\downarrow$
	Great privacy improv And better utilit			Perfect privacy 50% 0% \	EER
	With the correct archite unsupervise vector quantization can a making them more pr	ed training d pply a high (lata, constraint on PP	G,	22

F0 modified + Wav2vec 2.0 Vector quantized PPG performance

Dataset	LibriSpeech	n test-clean	VCT	VCTK test	
Method	Privacy EER% ↑	Utility WER%↓	Privacy EER% ↑	Utility WER $\% \downarrow$	
Clean speech	4.1	4.1	2.7	12.8	
Ours TDNNF NO VQ Ours TDNNF VQ 256 Ours TDNNF VQ 128 Ours TDNNF VQ 64	$8.7 \\ 16.2 \\ 17.7 \\ 21.1$	$6.9 \\ 9.9 \\ 10.4 \\ 12.4$	$ 10.8 \\ 22.9 \\ 24.0 \\ 30.0 $	$19.1 \\ 24.1 \\ 26.3 \\ 29.1$	
Ours WAV2VEC2 TDNNF NO VQ Ours WAV2VEC2 TDNNF VQ 48 Ours WAV2VEC2 TDNNF VQ 48 + F ₀ AWGN _{15dB}	$7.7 \\ 17.5 \\ 23.4$	$ \begin{array}{c} 3.8 \\ 4.5 \\ 4.6 \end{array} $	12.1 28.0 40.8	7.8 10.0 10.3	
VPC 2022 baseline	13.5	5.1	20.6	13.0	

Perfect privacy protection: 50% EER 0% WER

Significantly better than the VPC 2022 baseline