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Context: Speech recognition in the cloud
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The cloud runs a classifier on the raw audio feature and
sends the result back to the user
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Two general solution:
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cryptography anonymization

Voice Privacy Challenge:
Promote research in privacy related to speech

https://www.voiceprivacychallenge.ora/
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Application context: Share speech data for training new ASR models
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Collecting large speech dataset representative of real users and various usage conditions is
important to improve ASR systems
Must be done while preserving user's privacy => keep the speaker’s identity private

1. Os1a, Seyed Ali et al., « A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics », in : IEEE
Internet of Things Journal (2020).
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Collecting large speech dataset representative of real users and various usage conditions is
important to improve ASR systems
Must be done while preserving user's privacy => keep the speaker’s identity private

ASR transcription + TTS
is not a solution
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Threat model: Linkability of the speaker's speech
ISO/IEC international Standard 24745 on biometric data protection

Speaker Verification Attack
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Image from: General Framework to Evaluate Unlinkability in Biometric Template Protection Systems, Gomez-Barrero et al
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Voice Privacy: Evaluation protocol

Voice privacy challenge 2022 informed attacker evaluation
Goal:
e Privacy: reduce speaker linkability

e Utility: allows the speech to be used for downstream task such as speech recognition

Privacy: Utility:

ization ; e ASVeval ; e ization
Anonymizaticn ASReval

Privacy evaluation using
Automatic Speaker Verification
Metric: EER (maximize)

Utility evaluation using
Automatic Speech Recognition
Metric: WER (minimize)



Voice Privacy: Speaker anonymization framework
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Speaker representation and modification
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Speaker representation and modification

Baseline voice privacy
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The baseline speaker anonymization system

Performs the speaker modification using
x-vector

1. FANG, Fuming et al., « Speaker Anonymization Using X-vector and Neural Waveform Models », in : 10th ISCA Speech Synthesis Workshop,
2019.

2. SRIVASTAVA, Brij Mohan Lal et al., « Design Choices for X-vector Based Speaker Anonymization », in : Interspeech (2020).
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Baseline Voice Privacy: Speaker modification
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1. FANG, Fuming et al., « Speaker Anonymization Using X-vector and Neural Waveform Models », in : 10th ISCA Speech Synthesis Workshop,

2019.

2. SRIVASTAVA, Brij Mohan Lal et al., « Design Choices for X-vector Based Speaker Anonymization », in : Interspeech (2020).



Voice Privacy: Speaker modification
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SRIVASTAVA, Brij Mohan Lal et al., « Design Choices for X-vector Based Speaker Anonymization », in : Interspeech (2020).

FANG, Fuming et al., « Speaker Anonymization Using X-vector and Neural Waveform Models », in : 10th ISCA Speech Synthesis Workshop,

3. CHAMPION, Pierre, Denis JOUVET et Anthony LARCHER, « Evaluating X-vector-based Speaker Anonymization under White-box Assess-

ment », in : SPECOM, 2021.
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Voice Privacy: Speaker modification
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Speaker representation and modification

Proposed
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array([o, 1, 9, 9])

Performs the speaker modification using a one
hot encoding of a single speaker identity

1. Pipeline simplification
2. Unlinkability guarantee
3. No overestimation of privacy protection
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Phonetic PosteriorGrams
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Phonetic PosteriorGrams representation
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Encodes:

- Speech sounds corresponding to the content
- Speaker ldentity

1. Ab1, Y. etal., « To Reverse the Gradient or Not : an Empirical Comparison of Adversarial and Multi-task Learning in Speech Recognition »,
in: IEEE ICASSP, 2019.

2. CHAMPION, Pierre, Denis JOUVET et Anthony LARCHER, « Privacy-Preserving Speech Representation Learning using Vector Quantiza-
tion », in : Journées d’Etudes sur la Parole (JEP, 34e édition), 2022.

3. SHAMSABADI, Ali Shahin et al., « Differentially Private Speaker Anonymization », in : arXiv (2022).
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PPG extractor: acoustic model

Explored with multiple acoustic model:

e Wav2vec 2.0 pre-trained with VoxPopuli
Wav2vec 2.0-TDNN-f trained with
librispeech train-100

=> extract continuous PPG

!

Kaldi
Loss

Wav2vec —>| TDNN-f PPG |[—| TDNN-f |—
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Explored with multiple acoustic model:

e Wav2vec 2.0 pre-trained with VoxPopuli
Wav2vec 2.0-TDNN-f trained with
librispeech train-100

=> extract continuous PPG

!

Kaldi
Loss

Wav2vec —>| TDNN-f PPG |[—| TDNN-f |—

e Wav2vec 2.0-TDNN-f trained with
librispeech train-100
+ vector quantization layer
=> extract discrete PPG

Kaldi

Wav2vec —| TDNN-f [—| vVQ |—| PPG —>| TDNN-f |— P
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Baseline performance

Dataset LibriSpeech test-clean VCTK test
Privacy Utility Privacy Utility
Method EER% t WER% | EER% + WERY% |
Clean speech 4.1 4.1 2.7 12.8
Anonymized (Wav2Vec 2.0 - No VQ) 7.7 3.8 12.1 7.8
T Perfect privacy protection:
Kol 50% EER
Wav2vec [—>| TDNN-f —>| PPG || TDNN{ |—| [0 0% WER

Wav2vec 2.0-TDNN-f

Small privacy improvement for both datasets

Utility improvement for both datasets

Speaker leakage occurs in the pipeline
as the EER are still very low
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Vector quantized PPG performance

Dataset LibriSpeech test-clean VCTK test
Privacy Utility Privacy Utility
Method EER% t WER% | EER% + WERY% |
Clean speech 4.1 4.1 2.7 12.8
Anonymized (Wav2Vec 2.0 - No VQ) 7.7 3.8 12.1 7.8
Anonymized (Wav2Vec 2.0 - VQ 48) 117.5 4.5 1 28.0 10.0 |
T Perfect privacy protection:
_ 50% EER
Wavzvec [+ TONN |—| V@ |~ PPG |—-| TONN || [ 0% WER

Wav2vec 2.0-TDNN-f VQ

Higher privacy improvement for both datasets
Same utility improvement for both datasets

Vector quantization applies a constraint on the
PPG representation space, making them more
private without losing too much utility -




Fundamental frequency
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Fundamental frequency modification
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- Prosody
- Speaker ldentity

1. CHAMPION, Pierre, Denis JOUVET et Anthony LARCHER, « A Study of FO Modification for X-Vector Based Speech Pseudonymization
Across Gender », in : The Second AAAI Workshop on Privacy-Preserving Artificial Intelligence, 2021.

2. GAzZNEPOGLU, Unal Ege et Nils PETERS, « Exploring the Importance of FO Trajectories for Speaker Anonymization using X-vectors and
Neural Waveform Models », in : Workshop on Machine Learning in Speech and Language Processing, 2021.

3. SHAMSABADI, Ali Shahin et al., « Differentially Private Speaker Anonymization », in : arXiv (2022).
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FO modified + Vector quantized PPG performance

LibriSpeech test-clean

VCTK test

Privacy Utility
EER% 1T WER% |

Privacy Utility
EER% 1 WER% |

Clean speech 4.1 4.1 2.7 12.8

Anonymized 7.7 3.8 12.1 7.8
Anonymized vQ 48 117.5 4.5 1 28.0 10.0 |
Anonymized VQ 48 + Fg NOISE 1 23.4 4.6 140.8 10.3 |

FO noise + Wav2vec 2.0-TDNN-f VQ

Highest privacy improvement for both datasets
Same utility improvement for both datasets

Adding White Gaussian noise to the FO
trajectory allows to hide the speaker
information that it contained

Perfect privacy protection:
50% EER
0% WER
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FO modified + Vector quantized PPG performance

Dataset LibriSpeech test-clean VCTK test

Privacy Utility Privacy Utility
Method EER% 1 WER% | EER% 1 WER% |
Clean speech 4.1 4.1 2.7 12.8
Anonymized 7.7 3.8 12.1 7.8
Anonymized vQ 48 117.5 4.5 [ 28.0 10.0 |
Anonymized VQ 48 + Fg NOISE 1123.4 4.6 1140.8 10.3 !
Anonymized VPC 2022 baseline 13.5 5.1 20.6 13.0

Perfect privacy protection:
50% EER
0% WER

Significantly better than the VPC 2022 baseline
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Conclusion

Q: Are disentangled representations all you need to build speaker anonymization systems?
A: Yes, but how?

e One hot encoding is all we need, targeting a single identity => simplifying the pipeline with guarantee

e Vector quantized PPG has some limitation => Can we annotate the anonymized speech to retrain ASR system?

e FO modification with noise has intelligibility limitation

Thank for your attention
Email: pierre.champion@inria.fr

Live Demo / Shared Models / Code Source at:
https://colab.research.google.com/qithub/deep-privacy/SA-toolkit/blob/master/SA-colab.ipynb
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Wav2vec 2.0 Vector quantized PPG performance

Dataset LibriSpeech test-clean VCTK test
Privacy Utility Privacy Utility
Method EER% 1t WER% J EER% * WER% |
Clean speech 4.1 4.1 2.7 12.8
Ours TDNNF NO VQ 8.7 6.9 1 10.8 19.1 ¢
Ours TDNNF VQ 256 16.2 9.9 1 22.9 24.1 ¢
Ours TDNNF VQ 128 | 17.7 10.4 1 | 24.0 26.3 1
Ours TDNNF VQ 64 | 211 12.4 1 /' 30.0 29.1 1
Ours WAV2VEC2 TDNNF NO VQ 7.7 3.8 | 121 7.8 |
Ours WAV2VEC2 TDNNF VQ 48 | 175 4.5 | 28.0 10.0 |

. . Perfect privacy protection:
Great privacy improvement for both datasets 50% EER

And better utility for both datasets 0% WER

With the correct architecture, depth and amount of
unsupervised training data,
vector quantization can apply a high constraint on PPG,
making them more private without losing utility
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FO modified + Wav2vec 2.0 Vector quantized PPG performance

Dataset LibriSpeech test-clean VCTK test
Privacy Utility Privacy Utility
Method EER% 1t WER% | EER% 1t WER% |
Clean speech 4.1 4.1 2.7 12.8
Ours TDNNF NO VQ 8.7 6.9 10.8 19,1
Ours TDNNF VQ 256 16.2 9.9 22.9 24.1
Ours TDNNF VQ 128 17,7 10.4 24.0 26.3
Ours TDNNF VQ 64 21.1 124 30.0 29.1
Ours WAV2VEC2 TDNNF NO VQ i 3.8 12.1 7.8
Ours WAV2VEC2 TDNNF VQ 48 17.5 4.5 28.0 10.0
Ours WAV2VEC2 TDNNF VQ 48 + Fg AWGN1548 23.4 4.6 40.8 10.3
VPC 2022 baseline 13.5 5.1 20.6 13.0
Perfect privacy protection:
50% EER
0% WER

Significantly better than the VPC 2022 baseline
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